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Abstract 25 

Advances in modeling growth using tag-recapture data and progress in otolith ageing procedures 26 

allowed improved fitting of the western Atlantic bluefin tuna growth curve. Growth parameters were 27 

derived from an integrated analysis of tag-recapture data and otolith age-length data using the “Aires-da-28 

Silva-Maunder-Schaefer-Fuller with correlation” (AMSFc) framework, which models growth such that 29 

parameter estimates from each data source are directly comparable. The otolith data consisted of a 30 

sample of 4,045 otoliths for which ages were estimated using tested and consistent protocols and 31 

conventions designed to avoid bias. Strict data quality control measures were applied to the tagging data 32 

for quality assurance and a subsample of 1,118 records were retained for use in the analysis. Two forms 33 

of the Schnute (1981) growth model were considered: the Richards model and the von Bertalanffy 34 

model. The Richards curve appears to provide a better fit. Both curves follow a similar trajectory until 35 

age 16, after which they diverge considerably. The Richards model supports a lower mean asymptotic 36 

length (��= 271.0 cm FL) than the model currently used in the stock assessment (��= 314.9 cm FL).  37 

Keywords: Growth, Thunnus thynnus, fisheries stock assessment, otolith, tagging. 38 
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1. Introduction 40 

Migratory pelagic fish present both opportunities and challenges in developing predictive growth 41 

models. Species such as Atlantic bluefin tuna Thunnus thynnus (ABT) attract substantial fishing effort, 42 

affording opportunities to access fish for tagging and collection of otoliths, which support 43 

parameterization of growth. Principal challenges include sufficient sampling, implementing quality 44 

control procedures to curtail biased observations throughout the stock’s range, and making best use of 45 

combined age-length and tag-recapture data. Otolith data are used to estimate absolute ages and allow 46 

size-at-age functions to be modeled. For western ABT, these data are largely centered on the larger/older 47 

fish targeted by the recreational and commercial fisheries. Tagging data often have the opposite problem 48 

of lacking large fish and fish with long times at liberty. Each data source is also prone to various sources 49 

of observation error – mainly variability in age assignment across readers and measurement error in 50 

recorded fish lengths. It is therefore advantageous to estimate growth from both sources of data 51 

simultaneously to increase the size and representativeness of the sample and test the influence of each 52 

dataset on resulting parameter estimates (Maunder and Punt, 2013). We apply a new maximum 53 

likelihood approach to fit jointly direct age estimates, for a large sample of otoliths, with release and 54 

recapture lengths of conventionally-marked fish. 55 

ABT is the largest member of the Scombridae family. It can reach weights exceeding 600 kg 56 

(Collette and Nauen, 1983) and live over 34 years (present study). The species is assessed and managed 57 

as two distinct stocks by the International Commission for the Conservation of Atlantic Tunas (ICCAT) 58 

under the assumption of no net mixing (ICCAT, 2014): the eastern stock (eastern 59 

Atlantic/Mediterranean) and the western stock (western Atlantic/Gulf of Mexico), with spawning 60 

grounds on opposite sides of the North Atlantic Ocean basin (Boustany et al., 2008; Carlsson et al., 61 

2007; Riccioni et al., 2010; Richardson et al., 2016). Although these two stocks are conventionally 62 

separated by the 45°W meridian, tagging data indicate a high degree of transoceanic migration for 63 

animals of all ages, with significant mixing occurring on foraging grounds (Block et al., 2001, 2005; 64 

Sibert et al., 2006).  65 

Following years of overfishing, ICCAT adopted rebuilding plans for the western and eastern stocks 66 

in 1998 and 2006, respectively, gradually tightening control measures over time, as the Commission 67 

strived to meet its objectives. According to the latest stock assessment, both stocks are showing signs of 68 

recovery. Still, considerable uncertainties remain in the assessment, particularly regarding maturity, 69 

growth dynamics and the level of mixing between the two stocks, making it difficult to draw definite 70 

conclusions about the current and future status of the stock (ICCAT, 2014).  71 

Information on age and growth is needed to assess properly a depleted stock and define its rebuilding 72 

target. This holds especially true for bluefin tuna for which a growth curve is used to translate catch-at-73 

size to catch-at-age through cohort slicing in the stock assessment process. Being a moderately long-74 

lived, iteroparous species, bluefin tuna relies on the periodic production of strong year classes to persist 75 

through time (Secor, 2007). In this case, it becomes particularly important to characterize precisely the 76 

age structure of the stock, since having a truncated age structure (Siskey et al., 2016) and being the 77 

target of a highly age/size selective fishery (ICCAT, 2014) can severely compromise the sustainability 78 

of the fishery.  79 

The growth parameters currently used in the assessment of western ABT (Restrepo et al., 2010) were 80 

derived from a combination of otolith-based age readings for large fish (n=146;  Neilson and Campana, 81 

2008; Secor et al., 2009) and modal analysis of length frequency data for small fish (1-3 years of age, 82 

1970’s US purse seine data). In their analysis, Restrepo et al. (2010) did not include information 83 

available in the ICCAT tagging database used to construct the former growth curve (Turner and 84 

Restrepo, 1994) due to data quality concerns and biases in the estimation process. Although the Restrepo 85 
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et al. (2010) analysis was a significant improvement over the former growth curve, recent advances in 86 

integrative modeling and otolith age reading techniques highlights the need for an updated assessment of 87 

the current growth curve.  88 

During a workshop aimed at standardizing otolith-based ageing protocols for ABT, Busawon et al. 89 

(2015) determined that the otoliths used by Restrepo et al. (2010) were significantly over-aged (average 90 

3 years) due to errors in assignment of the first annulus. The problem was resolved using a standardized 91 

reference scale for the first annulus adopted by the laboratories involved in ageing studies (Secor et al., 92 

2014a).  93 

Improvements in both data quality control (Ailloud et al., 2014) and modeling techniques (Aires-da-94 

Silva et al., 2015; Francis et al., 2016) now allow for the ICCAT tagging data to be incorporated in the 95 

growth analysis. Francis (1988) showed that growth parameters estimated from age-length data and 96 

tagging data have different interpretations when tagging data are analyzed by modeling growth 97 

increments through time (e.g., as done by Fabens, 1965). Comparing these estimates assumes that the 98 

expected annual growth of fish of age A (estimated from age-length data) is equivalent to the expected 99 

annual growth of fish whose length is equal to the mean length of fish of age A (estimated from tagging 100 

data), which is seldom the case (Francis, 1988). In recent years, maximum likelihood approaches have 101 

been developed that model the joint density of the release and recapture lengths as a function of age, 102 

making growth estimates age-based and thus avoiding the comparability problem (Laslett et al., 2002; 103 

Palmer et al., 1991; Wang et al., 1995). At the forefront of integrated methods is the so-called “Laslett-104 

Eveson-Polacheck” (LEP) approach (Eveson et al., 2004), which models the release and recapture 105 

lengths as functions of age by treating age at tagging and asymptotic length, ��, as random variables. 106 

Though statistically attractive, this method can be difficult to implement due to its high computational 107 

demands and complicated error structures. A simpler alternative was developed by Aires-da-Silva et al. 108 

(2015) and later improved upon by Francis et al. (2016) by allowing correlation among deviates in 109 

tagging length: the AMSFc approach (Francis et al., 2016), named after Aires-da-Silva, Maunder, 110 

Schaefer and Fuller, where ‘c’ stands for correlation. Like the LEP approach, this method also treats 111 

pairs of observed lengths as a function of age, but treats  �� as a fixed parameter, greatly reducing the 112 

computational demands of the model (Aires-da-Silva et al., 2015). The AMSFc approach is applied here 113 

to fit and compare alternative growth models for the western stock of ABT. 114 

2. Materials and Methods 115 

2.1 Tagging data 116 

The ICCAT conventional tagging database combines tag release and return information from several 117 

tagging studies conducted in various regions of the North Atlantic Ocean over the past 75 years. Of 118 

more than 85,000 releases, ICCAT recovered information for nearly 6,000 recaptures, of which 2,434 119 

had complete and plausible data (e.g., non-negative times at liberty) on the date and length at release and 120 

recapture. Ailloud et al. (2014) demonstrated that the database contains valuable information for 121 

estimating growth of bluefin tuna (such as records of fish that were at liberty for many years and of old 122 

fish which appear to have reached their maximum sizes), but that extraction of the data must be done 123 

with care. Quality control measures employed in our analysis are detailed below (applied to data from 124 

the 06/30/2016 database update). 125 

1) Animals at liberty for less than 105 days (~3.5 months) were excluded from the analysis 126 

(1,068 records) since, a) for fish with short times at liberty, the observed growth increments 127 

largely represent measurement error rather than somatic growth (Ailloud et al., 2014), and b) 128 

stress related to the tagging event could potentially have an adverse effect on growth in the 129 

short run.  130 
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2) Records showing the fastest and slowest 2% absolute growth per day were removed in an 131 

attempt to eliminate outliers (i.e., data entry misrecordings and large measurement errors) and 132 

improve growth parameter estimates (116 records dropped). To test the sensitivity of the 133 

results to these outliers, a separate run that included the outliers was performed. 134 

3) Fish both captured and recaptured in the eastern Atlantic, as well as fish either captured or 135 

recaptured in the Mediterranean, were excluded from the analysis (132 records). This rule 136 

does not guarantee that fish of eastern origin are removed from the sample since considerable 137 

mixing is known to occur (Siskey et al., 2016), but it instead attempts to keep the tagging data 138 

sample focused on fish present in the western Atlantic, since growth is presumably linked to 139 

local conditions (e.g., prey abundance, water temperature and fish density).  140 

 141 

The resulting dataset consisted of 1,118 records with lengths at tagging ranging from 36 cm FL to 142 

259 cm FL, lengths at recapture ranging from 53 cm FL to 292 cm FL (Supplementary Fig. A1) and 143 

times at liberty ranging from 4.5 months to 16 years (median= 1 year). 53% of the records corresponded 144 

to fish tagged in the 1960’s, another 43% corresponded to fish tagged in the 1970’s and the remaining 145 

4% were released between 1980 and 2011.  146 

2.2 Otolith data 147 

The otolith data consisted of samples collected from the Gulf of Mexico (n=305), the southeastern 148 

USA (n=55), the USA Mid-Atlantic Bight (n=1,141) and the Northeastern USA/Canada (n=2,512) 149 

(Supplementary Fig. A2). The large majority of otoliths (85%) was collected between 2009 and 2015. 150 

Snout lengths and curved fork lengths (CFL) were converted to straight fork lengths (FL) using 151 

conversion factors from Secor et al. (2014b) and Rodriguez-Marin et al. (2015), respectively. In the few 152 

cases where no length measurements were taken (3.5% of records), round weights were converted to FL 153 

using monthly conversion factors from Rodriguez-Marin et al. (2015). Sizes ranged from 48 cm FL to 154 

300 cm FL (Supplementary Fig. A1) and age estimates from 1 to 34 years.  155 

Neilson and Campana (2008) validated absolute age in large/old bluefin tuna using bomb 156 

radiocarbon dating and Siskey et al. (2016) confirmed the annual periodicity of growth increments, 157 

validating otolith ageing for the species. Otolith samples were prepared and read by experts following 158 

the standardized protocol outlined in Secor et al. (2014a) and Busawon et al. (2015) which, among other 159 

things, prescribes using a reference scale to identify the first annulus and performing multiple reads per 160 

otolith to detect any inconsistencies and reduce ageing error. Using a reference set of otoliths (n=100), 161 

Busawon et al. (2015) estimated that ageing error was low among readers and detected no systematic 162 

bias. Each sample was assigned an integer age based on annuli counts of either opaque of translucent 163 

bands, which was then adjusted (����) to account for the timing of band formation (i.e. when counting 164 

opaque bands, one year was added to the age if the fish was caught between January and June; when 165 

counting translucent bands, one year was deducted from the age if the fish was caught between July and 166 

December. The estimated age was then assigned a decimal age (���	�
) that accounted for the time 167 

elapsed between birth month (b) and month of capture (c) using the following equation: 168 

 169 

 ���	�
 = ���� + (� − �) 12⁄  (1) 
 170 

To test the influence of outliers on the resulting parameter estimates, a sensitivity run analysis was 171 

performed by excluding otolith records whose length observations fell beyond 3 standard deviations 172 

from the mean for each age (33 records). Additionally, because of the possibility that the size 173 

composition of the first few age groups was positively biased by a combination of size selectivity of the 174 
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fishery (only the largest individuals at age 1 and 2 are caught owing to a minimum size limit of 6.4 kg 175 

established in 1975) and timing of capture (all fish ages 1 and 2 were captured in the summer months 176 

when growth is thought to be fastest; Supplementary Fig. A2) the growth models were refitted without 177 

age groups 1 and 2.  178 

2.3 The AMSFc approach 179 

We used the AMSFc approach of Francis et al. (2016) to analyze the otolith and tagging data 180 

simultaneously. This maximum likelihood method has two likelihood components, one for each data 181 

source, both of which model length as a function of age. For the tagging data, this entails modeling the 182 

joint distribution of the lengths-at-release and –at-recapture (with correlation �) as a function of age at 183 

tagging (����) and time at liberty (∆�). Since ���� is unknown, it is treated as a random effect with an 184 

assumed probability distribution whose parameters are estimated in the maximum likelihood framework. 185 

For each component, a common growth function is specified to describe the relationship between mean 186 

length and age, and variability in length-at-age is defined.  187 

2.4 The growth function 188 

Two growth models were considered to describe the functional relationship between fish length (L) 189 

and age (a): the Richards (1959) model and the von Bertalanffy (1938) model. The von Bertalanffy 190 

model was chosen to allow for a direct comparison of the results to the growth curve currently used in 191 

the stock assessment (i.e., Restrepo et al., 2010) and the Richards model was chosen for its increased 192 

flexibility in fitting data. The Richards function has an additional shape parameter (p) that allows it to 193 

take on a sigmoidal form. Let �� and �� be two reference ages (pre-specified by the modeler) with 194 

corresponding mean lengths �� and ��, respectively, and p be a shape parameter (p≤1). Then, both 195 

models can be expressed as special cases of the Schnute (1981) model, as follows:   196 

 197 

 �� =  �(�;  = {", $, ��, ��, ��, ��}) (2) 
where, 198 

 �(�;  ) = [��
' + (��

' − ��
')

1 − ()*(�)+,)

1 − ()*(+-)+,)]
� '/  (3) 

 199 

While growth models are typically parameterized in terms of ��and �0 (the theoretical age at size 0), 200 

the Schnute model is parameterized in terms of two reference ages, �� and ��, representing the youngest 201 

and oldest fish in the sample, respectively. This parameterization reduces the correlation between the 202 

estimates of parameters, unlike models parameterized in terms of �� and $, which are otherwise highly 203 

correlated. The shape parameter, ", is related to the ratio of the length at the inflection point to the mean 204 

asymptotic length (��). When " = 1, there is no inflection point and the model reverts to a von 205 

Bertalanffy curve. When " < 1 it takes on the shape of a Richards curve, with the inflection point 206 

moving up along the age-length curve as " decreases. $ has units time-1, when an inflection point exists, 207 

its inverse, 1 $⁄ , is related to the age associated with the inflection point on the curve. For the von 208 

Bertalanffy model, K relates to the rate of approach to the asymptote. Schnute (1981) provides the 209 

following equations to obtain �� and �0 from the parameters of the Schnute model: 210 

 �� = [
(*+-��

' − (*+,��
'

(*+- − (*+,
]

� '/  (4) 

 �0 = �� + �� −
1
$

ln [
(*+-��

' − (*+,��
'

��
' − ��

' ] (5) 

 211 
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Variability about the mean length-at-age was modelled as the sum of process error (i.e. true 212 

variability around the mean curve resulting from individual variability in growth) and observation error 213 

(i.e. resulting from estimated or converted length measurements). As in Aires-da-Silva et al. (2015), true 214 

variability around the mean curve (hereafter referred to as “variability in length at age”) was defined as a 215 

linear function of length with intercept �∗ and slope b, 216 

 567 = �∗ + ��� (6) 
 217 

while observation error, 589:, was defined as, 218 

 589: = 589: ;� (7) 
where ;� is an indicator variable that takes on the value 1 if a length record was either estimated or 219 

converted from another length/weight measurement and 0 if it was directly measured as straight FL. 220 

2.5 Otolith likelihood 221 

The log-likelihood for the otolith data, ln(<8�8), was expressed as the sum of the log-likelihood 222 

contributions from each fish. Length-at-age was assumed to be normally distributed with expected 223 

length given by (1). To avoid computational problems, the linear relationship of the variability in length-224 

at-age with length (eq. 7) was parameterized in terms of the reference lengths ��and �� (estimated by the 225 

model), as follows (Schnute and Fournier, 1980):  226 

 567 = 56, + =56- − 56,>
?[��] − ��

�� − ��
+ 589:;� (8) 

2.6 Tag-recapture likelihood  227 

Lengths-at-tagging and –at-recapture were modeled following a bivariate normal distribution with 228 

correlation, �. The expected length at age of individual fish was defined by the expected lengths at 229 

tagging (����) and recapture (�@AB), given the unknown age at tagging (����) and time spent at liberty 230 

between each capture event (∆�) (i.e., �() given in eq.2): 231 

 232 

 ?[����|���� = �] =  �(���� = �;  ) (9.1) 
 ?[�@AB|� + ∆�] =  �(� + ∆�;  ) (9.2) 
 233 

The random effects for the age-at-tagging (����) were assumed to follow a lognormal distribution 234 

with mean (D
8�+E7F) and standard deviation (5
8�+E7F) of ���� estimated on the log scale. The 235 

lognormal distribution was chosen because it seemed to provide a reasonable approximation to the 236 

distribution of lengths-at-release. Given the small sizes and narrow size range observed in the length-at-237 

release, we expected a relatively linear relationship between length-at-age and length-at-release. As with 238 

the otolith data, the standard deviations associated with each length were defined as: 239 

 240 

 56E7F = 56, + (56- − 56,)
?[����|�] − ��

�� − ��
+ 589:;� (10.1) 

 56GHI = 56, + (56- − 56,)
?[�@AB|� + ∆�] − ��

�� − ��
+ 589:;� (10.2) 

 241 

As Francis et al. (2016) demonstrated, lengths-at-tagging and –at-recapture are likely to be more 242 

highly correlated when time-at-liberty is short (cor(����,�@AB) close to 1), with correlation decreasing 243 
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with increasing time at liberty. Thus, the correlation coefficient, �, was modeled as a simple decreasing 244 

function of ∆� (Francis et al., 2016): 245 

 246 

 � = 1 −
1 − �0

1 − �0 + �0(()JK∆�) (11) 

 247 

where �0 (0<�0<1) is the correlation between ���� and �@AB when ∆�=0, and  LM (LM > 0) is related 248 

to the steepness of the slope defining the relationship between � and ∆� (the higher the value of LM, the 249 

faster the correlation coefficient will decline to zero). 250 

The overall tagging log-likelihood, ln=<���>, was the sum of the bivariate normal log-likelihood of 251 

���� and �@AB and the lognormal log-likelihood of the random effects. 252 

2.7 Objective function 253 

The log-likelihoods of the tagging data and otolith data were added together into one objective 254 

function to be optimized:  255 

 256 

 Λ = ln(<8�8) + ln=<���> (12) 

 257 

The optimization was carried out in ADMB-RE (Fournier et al., 2012) using the separable functions 258 

feature to reduce memory requirements and computational demand of the random effects (Skaug and 259 

Fournier, 2015). The program’s default convergence criterion (maximum gradient component < 10-4) 260 

was used to evaluate convergence at the optimal solution. Due to differences in sample sizes between 261 

the two datasets, the otolith data carried more weight than the tagging data on the overall analysis. A 262 

sensitivity run was therefore conducted to test whether down-weighting the influence of the otolith data 263 

caused any noticeable changes to the results. The otolith log-likelihood was multiplied by a factor of 264 

0.27, the inverse of the 3.7 times as many otolith records as tagging records.  265 

2.8 Model diagnostics 266 

Goodness of fit was first determined by visual inspection of the data plotted against the fitted curve. 267 

For the otolith data, a scatterplot of the standardized residuals was produced to look for any indication of 268 

poor model fit. Interpreting the residuals of the tagging component was complicated by the correlation 269 

between the lengths-at-tagging and –at-recapture. Instead a comparison was made between the observed 270 

lengths-at-recapture and their expected distributions given the parameters estimated in the model. This 271 

was done by calculating the conditional cumulative distribution function (c.d.f.) of  �@AB given ���� and 272 

∆� using the following approximation (see Appendix in Francis et al. (2016) for a detailed derivation): 273 

 

Q6GHI,R
=�@ABS���� = ����,�, ∆� = ∆��>

≈
∑ [Q6GHI,R

=�@ABS���� = ����,�, ∆� = ∆��, ���� = ��>�6E7F,R
=����S���� = ��>�+E7F =��>]�

∑ [�6E7F=����S���� = ��>� �+E7F,R
(��)]

 

(1
3) 

where QV denotes the c.d.f. of X, �V  denotes the probability density function (p.d.f.) of X, i refers to 274 

individual fish in the dataset, and {��} is a large set of equally spaced numbers covering the expected 275 

range of ages at tagging. If the model fits the tagging data, we would expect the quantiles of the 276 

conditional distribution to be evenly distributed over the interval (0,1). A Kolmogorov-Smirnov test was 277 

also carried out to formally compare the quantiles with that of a uniform distribution. 278 
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Finally, a log likelihood ratio test (with 1 degree of freedom and a significance level of α=0.05) was 279 

used to determine whether the addition of the shape parameter in the Richards model provided a 280 

significant improvement in fit over the simpler von Bertalanffy model.   281 

3. Results 282 

The two models generally follow similar growth trajectories until age 16 (~250cm FL), with the 283 

Richards model predicting slightly larger lengths for fish of ages 7 to 16 compared to the von 284 

Bertalanffy model (Table 1; Supplementary Fig. A3). Beyond age 16, the two curves begin to diverge 285 

considerably, with the von Bertalanffy model predicting a higher mean asymptotic length (�� = 318.9 286 

cm FL) than the Richards model (�� = 271.0 cm FL) (Supplementary Fig. A3). There were also notable 287 

differences in the estimates of variability in length-at-age between the two models: the von Bertalanffy 288 

model predicted smaller variability in length-at-age for younger fish (56,= 5.0 < 7.7 cm FL) and higher 289 

variability in length-at-age for older fish (56-= 29.1 > 21.0 cm FL), compared with the Richards model. 290 

The von Bertalanffy growth curve currently used in the western ABT stock assessment (Restrepo et al., 291 

2010) was very similar to that estimated here (Supplementary Fig. A3).  292 

Visual inspection of the fitted curve against the otolith data (Fig. 1) indicated that the Richards 293 

model was a better fit than the von Bertalanffy model. Although the data show evidence of an 294 

asymptote, the von Bertalanffy model is not able to adequately capture the bend in the curve (Fig. 1). 295 

The scatterplot of residuals (Fig. 2) confirms this. The von Bertalanffy model displays a strong negative 296 

pattern in the residuals beyond age 18 (Fig. 2) that is only weakly apparent in the residual plot of the 297 

Richards model (beyond age 22; Fig. 2).  There is a noticeable lack of very young fish in the otolith data 298 

(Fig. 1), and both model fits show a positive trend in the residuals of fish aged 1-3, that is slightly more 299 

pronounced in the Richards model (Fig. 2). In the von Bertalanffy fit, there is a negative pattern to the 300 

residuals for fish of ages 4-6 followed by a positive pattern in the residuals of fish ages 7-16.  301 

The fit to the tagging data seemed adequate and similar between the two models (Fig. 3).  302 

Trajectories of fish with long times at liberty were in agreement with the general trajectory of the growth 303 

curve (Fig. 3) and both models estimated similar values for the parameters of the lognormal distribution 304 

of the unknown ages at tagging (Table 1, Fig. 4). The few records of fish that were relatively large at the 305 

time of release may have been under-aged (Fig. 3) but their influence on the results was negligible since 306 

they represented just 1% of the total tagging data sample. The histograms of quantiles of the conditional 307 

distribution of (�@AB|���� , ∆�) (Fig. 5) indicated that the von Bertalanffy model provided a slightly better 308 

fit to the tagging data than the Richards model. The differences in fit were a result of fish being assigned 309 

slightly younger ages at tagging under the von Bertalanffy model compared to the Richards model. 310 

Nonetheless, results from the Kolmogorov-Smirnov tests indicated that both models had some level of 311 

misfit since the quantile distributions associated with each model were both significantly different from 312 

a uniform distribution (p-value<0.01). These differences in fit between the two models are relatively 313 

unimportant when compared to the differences in fits observed in the otolith data. Trends in the otolith 314 

residuals resulting from the von Bertalanffy model were indicative of a much greater problem. Results 315 

from the likelihood ratio test likewise indicated that the Richards parameterization was a better fit to the 316 

data than the simpler von Bertanffy parameterization (p-value<0.001). Therefore, the Richards curve 317 

appears to be superior to the von Bertalanffy curve for modelling the growth of western ABT.   318 

Down-weighting the otolith component of the likelihood did not make an appreciable difference in 319 

the resulting curve for either model (Supplementary Fig. A4, Table A1). This indicates that the otolith 320 

and tagging data are complementary and in agreement with one another. What did change as a result of 321 

shifting the weight away from the otolith data were changes in the estimates of variability in length-at-322 

age estimates. The Richards model with down-weighted otolith component estimated smaller variability 323 
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in length at young ages (56,= 2.03 + 0.5 < 7.7 + 0.6) and larger variability at older ages (56-= 27.9 + 1.2 324 

> 56-= 21.0 + 0.7) compared to the Richards model without weights (Supplementary Table A1).  325 

The decision to exclude tagging records of fish showing the slowest and fastest 2% growth did not 326 

make any appreciable difference to the results (Supplementary Table A1). For the otolith data, the 327 

results were not sensitive to the impact of potential outliers, nor were they sensitive to biased samples of 328 

fish ages 1 and 2. In both cases, excluding these records changed estimates of $ and ��by less than half 329 

a percentage point compared with their original values (Supplementary Table A1).  330 

4. Discussion  331 

Growth parameterization for the western stock of Atlantic bluefin tuna was substantially improved 332 

by (1) adopting ageing protocols and data filtering criteria that reduced bias in both length increment 333 

data and otolith-based ageing, (2) a large and more representative sample of age estimates than existed 334 

historically, and (3) application of the AMSFc maximum likelihood approach, which allowed robust 335 

weighting of tagging and otolith data (i.e., the results were not sensitive the relative weights placed on 336 

the tagging and otolith likelihoods) in their combined use in parameterization of growth models.  337 

Further, applying the more general Schnute model fitting approach allowed us to identify past process 338 

error associated with adopting the traditional von Bertalanffy model. Because the observation and 339 

process errors identified in our study are general to other migratory stocks, we suggest the complement 340 

of approaches taken here for the western stock of ABT may serve to improve growth parameterization 341 

across a range of exploited species.  342 

Our new assessment of the ICCAT tag recapture data set and improvements to the growth curve 343 

indicate that western ABT attain lower mean asymptotic sizes than previously thought. The Richards 344 

parameterization of the Schnute model led to a better fit to the data. The shape parameter allowed it 345 

more flexibility in fitting to the older ages, resulting in a lower estimate of �� (271.0 cm FL) compared 346 

to the von Bertalanffy parameterization (318.9 cm FL). This new estimate of the average size of fish in 347 

the oldest age group appears to be in agreement with the range of maximum sizes reported in the 348 

literature. In a recent meta-analysis of historical size data, Cort et al. (2013) uncovered a collection of 349 

maximum sizes recorded during recreational fisheries competitions that took place between 1870 and 350 

1979, and found record sizes of landed fish ranging from 210 to 320 cm FL (mean=269cm FL; where 351 

the 320cm measurement was estimated from weight). Cort et al. (2013) also showed that records of fish 352 

with lengths greater than 330cm FL in the ICCAT tagging database did not agree with the accepted 353 

length-weight relationship, and were most likely the result of estimation errors or data misrecordings. 354 

Looking exclusively at measured lengths, the 20 largest fish present in the database ranged from 246 to 355 

295cm FL. According to the Richards model fit, an estimated variability in size-at-age of 21 cm near the 356 

maximum age means we should expect 95% of old fish to reach sizes between 229 and 313 cm FL. This 357 

result appears to be a more reasonable finding than that suggested by the von Bertalanffy fit which 358 

implies that the oldest fish commonly reach maximum sizes between 261 and 377 cm FL. 359 

Because otolith samples used in our analysis were largely obtained during fishery dependent 360 

surveys, they are expected to reflect the selectivity of the fishery from which they were obtained 361 

(Kolody et al. 2016; Schueller et al. 2014). Some of this sampling bias may have been lessened by large 362 

sample size, particularly in comparison to Restrepo et al. (2010).  Still, there was a noticeable lack of 363 

very young fish in the otolith data (Fig. 1) that was likely due, in part, to the presence of a minimum 364 

weight regulation of 30kg (~115cm FL) in the commercial fishery (in place since 1991) and, in part, to 365 

difficulties associated with sampling the recreational fishery. Similarly, the positive trend in the 366 

residuals of fish aged 1-3 apparent in both model fits (Fig. 2) could be a reflection of regulations placed 367 

on the recreational fishery, which prohibits landing fish <27” curved fork length ( ~70cm FL). It is also 368 
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likely to be a reflection of seasonal growth. All samples for fish ages 1-3 were obtained in the summer 369 

months (July-October for ages 1 and 2, and May-October for age 3) compared with other ages where, 370 

depending on the age, 1-50% of samples were obtained during the winter months (Supplementary Fig. 371 

A2). Faster growth in the summer has been recorded in the closely related species of southern bluefin 372 

tuna (Eveson et al., 2004) for which seasonality in growth has been modeled, and is thus likely to occur 373 

in ABT as well. Since seasonal changes in growth are most prominent in younger ages when fish 374 

undergo rapid growth, it is likely that the positive trend in residuals is linked to the clustering of samples 375 

age 1 and 2 around months of fastest growth.  376 

Growth parameter estimates play a central role in the stock assessment of western Atlantic bluefin 377 

tuna. They are needed to convert historical catch-at-size data into catch-at-age data, using cohort slicing, 378 

and to estimate weight at age (ICCAT, 2014). Moreover, estimates of variability in size-at-age could be 379 

used to improve the cohort slicing procedure by adjusting the length bounds used to assign ages to 380 

individual fish. Preliminary analyses comparing cohort slicing results using growth parameters from the 381 

two different models showed that the use of the Richards growth parameter estimates resulted in higher 382 

contributions of very young and very old fish in the catch-at-age estimates compared with estimates 383 

obtained using von Bertalanffy growth parameters. The extent to which this will have an impact on the 384 

evaluation of the stock status is of prime interest and will need to be investigated. Growth parameter 385 

estimates are also used to calculate spawning potential ratio and biological reference points.  386 

Though a recent study by Siskey et al. (2016) suggests western ABT may have experienced subtle 387 

differences in growth rates during the past four decades, it was unclear how much of the observed 388 

changes might be due to fisheries selection or differences in sample coverage between decades (i.e., the 389 

relative number of small vs. large fish in the sample). Further investigation into that issue is warranted 390 

as using time-varying growth curves may help decrease uncertainty in the catch-at-age estimates used in 391 

the assessment, particularly with retrospective approaches such as catch-at-age-analysis. However, until 392 

balanced samples for each time period become available (perhaps through data mining of length 393 

frequency data), it is best to continue the use a single growth curve in the stock assessment of western 394 

ABT that is representative of the time period covered by the assessment as a whole. 395 

Finally, there have been discussions in ICCAT about possibly moving towards a length-based 396 

integrated assessment (ICCAT, 2014). If and when that happens, having good estimates of the average 397 

length of the oldest age-class in the model (��) and variability in size at age will become crucial since 398 

these parameters can play an important role in determining management outcomes (Aires-da-Silva et al., 399 

2015; Zhu et al. 2016). The observed differences in mean asymptotic length estimates are also likely to 400 

affect assessment results. Having reliable estimates of �� is particularly important for determining stock 401 

productivity and associated reference points used for management advice (Aires-da-Silva et al., 2015; 402 

Aires-da-Silva and Maunder, 2011) so further investigation should be carried out to determine the 403 

importance of such a change.  404 
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 523 

 524 

Figure 1. Otolith data plotted against the fitted Richards and von Bertalanffy curves (grey solid lines). 525 

In each panel, the shaded area represents the 2.5 and 97.5 percentiles of the distribution of the fitted 526 

length at age.  527 

  528 

Figure 2. Scatterplot of otolith standardized residuals resulting from the Richards and von Bertalanffy 529 

model fits. A loess line (grey solid line) was fitted to the residuals in each panel to investigate trends. 530 

For reference, horizontal dotted lines are drawn at 0 and ±2 standardized residuals.  531 

 532 

Figure 3. Tagging data plotted against the fitted Richards and von Bertalanffy curves (grey solid lines). 533 

Each vector represents the growth trajectory of a fish given its known length at release, length at 534 

recapture, time spent at liberty and estimated age at tagging (estimated using empirical Bayes methods). 535 

In each panel, the shaded area represents the 2.5 and 97.5 percentiles of the distribution of the fitted 536 

length at age.  537 

 538 

Figure 4. Estimated frequency (histogram) and probability density function (grey solid line) of the 539 

lognormal distribution of the random effects for the Richards and the von Bertalanffy models. 540 

 541 

Figure 5. Quantiles in distribution of (Lrec|Ltag,Δt) for the Richards and von Bertalanffy models. If the 542 

data were well fitted, the histogram of quantiles would follow an approximately uniform distribution and 543 

lie close to the horizontal dotted line. 544 

 545 

 546 

 547 

 548 

 549 













Table 1. Maximum likelihood estimates for the parameters of the Richards and von Bertalanffy 

growth models. Note: the K parameters of the Schnute parameterization of the Richards and von 

Bertalanffy models have different interpretations (see methods section 2.4).   

 

 

 

 

 

 

 
Richards 

(Schnute with  � <1) 

Von Bertalanffy 

(Schnute with � =1) 

 Value S.E. Value S.E. 

Fixed parameters     

�� 0 - 0 - 

�� 34 - 34 - 

� - - 1 - 

Estimated parameters     

�� 33.0 0.74 18.5 1.1 

�� 270.6 1.3 305.9 1.8 

� 0.22 0.01 0.09 0.002 

� -0.12 0.05 - - 

�� 1.5 0.18 0.97 0.15 

	
 0.97 0.01 0.94 0.01 

��� 3.6 0.46 2.8 0.44 

��� 7.7 0.60 5.0 0.66 

��� 21.0 0.69 29.1 0.91 

�������� 0.74 0.02 0.66 0.02 

�������� -1.3 0.04 -1.4 0.05 

Derived parameters     

�� 271.0 1.39 318.9 2.56 

�
 0 -  -0.65 0.05 

�∗ 5.84 0.69 3.5 0.75 

b 0.06 0.004 0.08 0.004 

Negative log-likelihood 19597.1 19884.7 




